Transcriptional control of pacemaker channel genes HCN2 and HCN4 by Sp1 and implications in re-expression of these genes in hypertrophied myocytes.
نویسندگان
چکیده
Cardiac hypertrophy is characterized by electrical remolding with increased risk of arrhythmogenesis. Enhanced abnormal automaticity of ventricular cells may contribute to hypertrophic arrhythmias. The pacemaker current I(f), carried by the hyperpolarization-activated channels encoded mainly by the HCN2 and HCN4 genes in the heart, plays an important role in rhythmogenesis. Their expressions reportedly increase in hypertrophic and failing hearts, contributing to arrhythmogenesis under these conditions. However, how their expressions are controlled remained unclear. We performed a study to characterize the regulatory elements and transcriptional control of HCN2 and HCN4 genes. We identified the transcription start sites by 5'RACE and core promoter regions of these genes using luciferase reporter assay, and revealed the ubiquitous Sp1 protein as a common transactivator of HCN2 and HCN4 genes. We further unraveled robust increases in HCN2/HCN4 transcripts and protein levels, using real-time RT-PCR and Western blot analyses, in a rat model of left ventricular hypertrophy and in angiotensin II-induced neonatal ventricular hypertrophy. The upregulation of HCN2 and HCN4 transcription was accompanied by pronounced elevations of Sp1 and silencing of Sp1 by siRNA prevented overexpression of HCN2/HCN4 in hypertrophic cardiomyocytes. Our data indicate that Sp1 drives HCN2/HCN4 transcription and determines the functional level of HCN2/HCN4 mRNAs, and upregulation of Sp1 underlie the abnormal re-expression of HCN2/HCN4 genes in hypertrophied myocytes. This study also provides the first evidence for the role of Sp1 in the reactivation of 'fetal' cardiac genes, HCN2 and HCN4, in ventricular myocytes, and thereby in the pathological electrical remodeling in hypertrophied myocytes.
منابع مشابه
Associated changes in HCN2 and HCN4 transcripts and I(f) pacemaker current in myocytes.
The time- and voltage-dependent inward current generated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contributes to the tissue-specific rhythmic activities in the brain and heart. Four isoforms (HCN1-HCN4) have been identified. Previous studies showed that different HCN isoforms may form functional heteromeric channels. We report here that when HCN2 and HCN4 mRNA w...
متن کاملEnhancement of valerenic acid production in Valeriana officinalis roots by methyl jasmonate-mediated transcriptional changes of sesquiterpene synthase genes
Valeriana officinalis (valerian), as a nutraceutical herb, is widely used for its sedative and hypnotic properties. It is known that C15 sesquiterpenoid valerenic acid (VA) is active ingredient responsible for pharmacological effects of V. officinalis. To evaluate the effect of methyl jasmonate (MeJA) concentrations (50 and 100 µM) in the modulation of expression patterns of the genes involved ...
متن کاملEnhancement of valerenic acid production in Valeriana officinalis roots by methyl jasmonate -mediated transcriptional changes of sesquiterpene synthase genes
Valeriana officinalis (valerian), as a nutraceutical herb, is widely used for its sedative and hypnotic properties. It is known that C15 sesquiterpenoid valerenic acid (VA) is the active ingredient responsible for pharmacological effects of V. officinalis. To evaluate the effect of methyl jasmonate (MeJA) concentrations (50 and 100 µM...
متن کاملProteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels.
In sino-atrial and atrio-ventricular nodal cells, hyperpolarization-activated cyclic nucleotide-gated (HCN) inward current carrying cationic channels, I(f), are expressed that contribute importantly to the diastolic depolarization critical for cardiac pacemaker activity. Although previous studies have demonstrated myocardial expression of both the HCN2 and HCN4 subunits, the specific roles of t...
متن کاملDominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes.
BACKGROUND The pacemaker current I(f) contributes to spontaneous diastolic depolarization of cardiac autonomic cells. In heterologous expression, HCN channels exhibit a hyperpolarization-activated inward current similar to I(f). However, the links between HCN genes and native I(f) are largely inferential, and it remains unknown whether I(f) is essential for cardiac pacing. METHODS AND RESULTS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 23 4-6 شماره
صفحات -
تاریخ انتشار 2009